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Abstract. The relation between the singulatities of multifraclal energy spectral measures 
and the behaviours of the Green function is studied in the framework of a tight-binding 
Hamiltonian If the measure LACE) has ascaling behaviour at energy E of the form A w ( E )  = 
p(E+S)-p(E-S)  c( 8=("). it is pmved ulat the imaginary pm of the Green function P(E.r) 
scalesas P ( E . s )  c( cS(') with,9(E) = a(E)+l,therevenebeingalsohue. Thisisexemplihed 
in the case Of lhe density of states and the local density of states of the one-dimensional Fibonacci 
quasicrystalline chain. 

1. Introduction 

Singular measures are frequently met in physics, and much attention has been paid to their 
characterization in recent years. If p(x)  is such a measure, one can for instance consider 
the scaling behaviour of A&) = J:+AXdp(x) in the form 

A @ ( x )  o( An + 0. (1) 
A constant scaling exponent 01 corresponds to a homogeneous fractal'measure. If, however, 
a ( x )  varies with n ,  the measure is said to be multifractal. Note that the above definition 
of the scaling behaviour can be sometimes ambiguous, due to the existence of subdominant 
terms which may play a role. We shall go back to this point below. In the multifractal 
case, one should also take care about the distribution of  the exponent 01(x). The usual 
approach to deal with (at least some of) these difficulties is the so-called 'thermodynamical' 
formalism [ I ] ,  which focuses on the continuous spectrum of exponents a ( x )  and its density 
f(or), usually a smooth function in the range [01,,,j", 01-1. But f ( a )  only provides a global 
description of the scaling properties, and one might be interested in the spatial location of 
the singularities. Using wavelet transforms seems a promising tool to perform this task [2 ,  
31. 

The topic of this paper is the muItifracta.1 analysis of the spectral measure of a tight- 
binding Hamiltonian in the spirit of the wavelet analysis of reference [ 2 ] .  Such singular 
continuous spectral measures have been widely studied in the last fifteen years. Their interest 
has become even sharper since the experimental discovery of quasicrystals [ 1 5 ] ,  because 
quasipenodic potentials often lead to singular spectral measures. Since electronic properties 
are associated with the nature of the spectrum, the investigation of its singularities is 
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therefore of great importance. For instance, the electronic specific heat is directly connected 
to the scaling of the density of states (DOS) spectral measure at the Fermi level. Singularities 
in the local density of states (LDOS) measure can also greatly influence the electronic 
transport properties. Most of the works in this field were devoted to the determination 
of the global scaling distribution function f ( a )  for the DOS measure [4]. In this paper, we 
show that, for such systems, the Green function can be used to reveal the scaling exponent 
distribution both for the DOS and the LDOS, directly in the energy space. 

2. Relation between the measure singularities and the Green function beha?+our 

The resolvent operator is defined by 

J X Zhong et nl 

G(Z) = 1/(Z - H) (2) 

with Z = E + ic, where H denotes the Hamiltonian of the system, E is the energy, and e 
a small positive value. For a tight-binding Hamiltonian 

where uc is the ith site energy, t i j  the hopping integral between the ith and j t h  sites; the 
Green function satisfies the following equation: 

(4) 

Let us dcfine P(E,c) = - ( l / N r r ) I m X F  Gij(Z)  in the case of DOS or P(E.Q) = 
-(l/rr)ImGjj(Z) for the LDOS at the ith site with E real. real e E [O, I], and N is the 
number of sites. 

According to the above definition (21, P(E, e )  is related to the spectral measure by 

(Z - IJi)Gij = 6jj + C t i k G k j .  
X 

and 
E 

& ( E )  = lim \ P(E', e)dE' 
6-0 -m 

where & ( E )  is the measure for the DOS or the LDOS, 
E 

& ( E )  = L _ d & ( E ' )  (7) 

with 0 < & ( E )  < 1 and J_i,"dp(E) = 1. 
Before discussing the relation between the measure singularities and the Green function 

behaviour, we need to give a clear definition of the scaling exponent a. For a positive 
function g(e) in [O, I], we consider the following integral: 

Js(a') = 1' cl+.+ d t  

We shall say that g(c) cx em, if Ja(a') converges for a' a and diverges a' z a. For 
a{ < a;, we have J g ( a ; )  < Jn(a;). Then if g(t) cx c a .  the scaling exponent 01 can be 
defined by 

01 = Sup(a', Jg(a') < +CO]. (9) 
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Now with the above definition, we consider a energy spectral measure @ ( E )  which has 
the following scaling behaviour at energy E: 

A p ( E )  = p ( E  + 6 )  - p ( E  - 6) K 6°(E) (10) 

which means that the integral 

converges for 01' < u(E)  and diverges if a' > a(E) .  a(E) = 1 for an absolutely continuous 
measure, whereas a ( E )  = 0 for a pure point specbum. The converse is not true: for 
instance, A p ( E )  may behave like Sln 6 which implies a(E) = I but p is not absolutely 
continuous. Let us remark that a(E) < 1 with probability one with respect to p.  This 
means that values of E with a > 1 may occur but they are exceptional in the spectrum 
and irrelevant for the time evolution of observables (see below). The purpose of this paper 
is to show how information about the scaling exponent a ( E )  can be extracted from the 
behaviour of P ( E .  E ) .  

-5.0 ' I 
-20.0 -15.0 -10.0 4.0 0.0 

0.1 I" s 

I 

PIE. 0 1 0.2 
5.0 10.0 15.0 20.c 

. 
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Figure 1. Scaling behaviour of the DOS (density of states) measure of the Fibonacci chain for 
the off diagonal model: (a) In P(E.6) against In 6 at eigenenergies E = 0. E = Er11 I... = 
2.83395643 ... and E = Eli~ruuxr.., = 2.83302389 ... for IA = 1. Ig = 2; (b) plot of P(E.€) 
for I A  = I ,  IB = 2; (e) relation between the scaling of the measure and the quasiperiodicity 
Sue"& r = tg/tAA, tA = 1. 

From (5) and (7), an integration by parts leads to 

dE'. 
E S+m 2(E' - E)p(E' )  

P ( E ,  E )  = - 
n -m [ (E ' -  E)' +E*]' 
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Let g = (E‘ - E)/€; (12) gives 

J X Urong et a1 

We consider the following integral: 

Using (13) and letting 6 = e t ,  we have 

Note that 

and 

To get (17), we have used the obvious relation P ( E  + 6) - /L(E - 6) < 1 and 

From ( I I ) ,  (14), (15) and (17). one can see that I p ( E , a ’ )  is convergent (divergent) if 
J p ( E ,  (U’) converges (diverges), and vice versa. This indicates that 

P(E, E )  a € # ( E )  (19) 

P ( E )  = a ( E )  - 1. (20) 
The above analysis shows that a singular continuous measure with the scaling properties 

described in (IO) leads to a scaling behaviour of the imaginary part of the Green function. 
Since the reciprocal case is also true, one can use the imaginary part of the Green function 
to investigate the singularities of the spectral measure. If one plots P ( E ,  E )  in the ( E .  E) 
plane, one gets at once the information about the spectral singularity distribution in the 
energy space. Let us stress here that, in our analysis. we only focus on the correspondence 
between the exponents a ( E )  and p ( E ) .  We may find cases where @ ( E )  = 0, which means 
(U@) = I. This does not mean automatically that the spectrum is absolutely continuous, 
as will be discussed later. In the following, we exemplify this approach in the case of the 
well known Fibonacci chain. 

As a 1D model of quasicrystals, tight-binding Hamiltonians on Fibonacci chains have 
attracted much attention [&lo]. It has been shown that the spectral measure is a multifractal, 
with a continuous scaling distribution function f(a) in the range [@,,,in, am-] [SI. We now 
study the off-diagonal Fibonacci model. The Hamiltonian parameters in (3) are chosen to 
be vi = 0, f j  = fA or f~ for nearest-neighbour hopping and 0 for others. ZA and f~ are 
two different values corresponding to the tiles A and B in the Fibonacci sequence which 
is generated by the inflation rule (A, B) + (AB, A). The spectrum of this model has 
a trifurcating structure [5-71. So the eigenenergies can be noted by codes [Cn],where n 
numbers the eigenenergies [5 ] .  A given IC.] is a semi-infinite ordered sequence composed 
of three kinds of number 0, 1 and -1, which represent respectively the middle-, the upper- 

such that 
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Figure 2. Scaling behaviour of the DOS measwe of fhe Fibonacci chain for the off-diagonal 
model wiul r~ = l , t B  = rc 2 10.6: (a) E = 0; (b) E = E I I I ~  ... = 11.17942667,..; (c) 
E = EIIII m... = 11.17942509 .... 

and the lower-eigenenergy clusters. For instance, the eigenvalue E = 0 (which belongs 
to the spectrum) is denoted [OOOO ...I, the upper and lower edges of the spectrum being 
represented by [I111 ...I and [-I - 1 - 1 - l...], respectively. 

3. Spectral measure of the density of states 

We first present numerical results for the DOS measure. The average Green function 
associated with the DOS measure can be exactly calculated using a renormalization group 
method [9 ] .  In figure I(a), the scaling ,5 at three eigenenergies is presented (for tA = 
1 , t ~  = 2). Comparing with the scaling of the measure at those energies [5], we find 
B ( E )  = a(E)  - 1, as expected. A crossover is found for E I I I I ~  ..., which corresponds 
to a transition from an edgelike behaviour to an (asymptotic) centre-like behaviour. To see 
the scaling distribution in the energy space, we plot P ( E ,  t) versus ( E .  t) in figure.l(b). 
From figure l(b), one can see that the minimum value of ,5 (which is associated with the 
minimum scaling (U) is located at the edge of the spectrum, while pma* (amar) is at the 
centre. The scaling varies with energy, indicating that the measure is multifractal (with a 
scaling distribution from amin = ~ ( E I I I I  ... ) to (U- = (u(E = 0)). 

It is interesting to investigate the relation between the scaling properties of the measure 
and the quasiperiodicity strength. We assume r~ = 1 and #B = r .  The relation between r 
and (u(E = 0) and ~ ( E , I I I . . , )  is given in figure I@). An interesting result is that there exists 
a critical point r,, where (u(E = 0) = ~ ~ ( E I I I I , . . ) .  This result is a direct consequence of the 
known analytical form of amio and (U- as functions of r [SI, but does not seem to have been 
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Figure 3. Swling behaviour of the mos memue al the site corresponding IO the tmnsformtion 
T.: (a) plot of P(E,c) for IA  = 1.18 = 2: (b) In P ( E . 4  against In f at eigenenergies 
E = 0. E = El 111 ... = 2.83395643 ... and E = EUIII I... = 0.479 16281 ... for IA = I ,  IB = 2: 
(c) In P(E.6) against In c at eigenenorgies E = 0 . E  = EIIII,.. = 11.l1942661 ... and 
E = EWII ... = 0.09175744.. for rA = I.lg =re = 10.6. 
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Fiyre  4. Scaling buhaviaw of the mos measure at the site comespanding to the transformation 
Tc with IA  = I, Ig = 2, (a) plol of P(E. e); (b) In P(E. c) against In f 0 eigenenergies E = 
0. E = EIIII , , ,  = 2.83395643 ..., E = Elm" m... =2.41644919 ... and E = EI-I-I-I-L ... = 
1.642391 60 .... 

E 1nr 

noticed previously. For r < r,, cu(E = 0) ~ ( E I I I ~ . , . ) ,  while a ( E  = 0) c ~ ( E I I I I , . , )  in the 
region r z r,. According to the above discussion, at r = r, (= 10.592337 60...) the spectral 
measure seems to be a homogeneous fractal measure (with a single scaling exponent) while 
it is multifractal for any other value. In figure 2, scalings at energies E = 0, EIIII, . .  and 
Ellllm ... for r 5 r, are illustrated. As expected, the slopes are identical and the crossover 
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at E = El111 m... is masked in figure 2(c). This single scaling is independent of the energy 
as we numerically checked for several other energies. 

4. Spectral measure of the local density of states 

As opposed to a periodic system, a quasiperiodic tiling has no translational symmetry. 
Different sites have different environments, with different local electronic properties. Studies 
of the single-electron motion in a quasiperiodic lattice showed that different initial electron 
locations lead to different quantum diffusion behaviours [1&14]. A recent work shows that 
quantum diffusion [13], or even the probability for an electron to remain at a site [14], are 
constrained by the LDOS measure scaling. In the following, we study the mos measure 
scaling properties in this system. Owing to self-similarity of the Fibonacci chain, one can 
use the three basic renormalization group trasformations T., T,. and T, to exactly calculate 
the local Green functions (LGFS) of the chain as described in detail elsewhere [9]. T,, Tb 
and Tc are decimation operations represented by (BAA, BA) + (A', B'), (AAB. AB) -+ 
(A', B') and (ABABA, ABA) + (A', B'), respectively. 

In figure 3(a) we display P ( E ,  e) at the site whose LGF is calculated by successive 
iterations of the transformation T,. Similar to the average DOS, the minimum scaling 
exponent &,in (a,,,in) appears at the edge of the spectrum. However the scaling distribution 
in the energy space is quite different from that in the DOS measure (see figure l(b)). From 
figure 3(b), one can see that, at E l l l l  .., the scaling exponent ,5 is different from the value 
it  takes in the average DOS. In addition, in figure 3(a), there are small peaks around the 
edges of the first centre cluster, which indicates large scaling exponent B (large a) at these 
energies. figure 3(b) shows the scaling behaviour at energies E = 0, EIIII , . .  and EOILII.,,. 
It is quite interesting that @ ( E  = 0) = 1, which is the value for a continuous measure, but 
here with subdominant periodic oscillations. Furthermore a(Eol11 1.558. We have 
verified numerically that a(E = 0) = 1 and oI(Eol111 ... ) > 1, independently of the strength 
r .  Figure 3(c) shows the scalings at the same 'coded' energies for ?A = 1, rB = 10.6 r, 
which corresponds to the above critical point of the DOS measure. Figure 3(c) indicates 
clearly that for a singular continuous measure, the LDOS measure can be multifractal even 
for a homogeneous fractal DOS measure. 

Figure 4 is devoted to the site whose LGF can be obtained by the successive 
transformation Tc. Figure 4(a) has a quite different scaling distribution from figure l(b) 
and figure 3(a). In figure 4(a), @,,,in) arises at the centre E = 0, while large fi  (large 
01)  values arise around cluster edge regions. Scalings for several energies are given in 
figure 4(b). One can see that the position where 01 = 1 shifts from E = 0 to the 'edge 
centre' E = E l m  .... At E = El-l-l-l-l ..., a ( E )  = 1.487. Similarly we find that 
~ ( E I - . , . )  = I,LY(EI-I-I -1- I...) =- 1 independently of r .  The scaling distributions for 
other sites have been investigated. It shows that the LDOS scaling distribution versus energy 
varies with the position of the site. 

From the above discussion, we have thus illustrated the fact that for a singular continuous 
measure, the scaling properties of the LDOS measure are quite different from those of the 
DOS measure. The differences are not only in the scaling distribution in energy space, but 
also in the values the scaling exponent can take. For the LDOS measure, we have found 
energies where the scaling can be equal to or larger than unity. At first sight, this point could 
be seen as surprising with respect to the electron motion in Fibonacci chains. The electron 
motion can be described by the quantum diffusion distance d( t )  at time t ,  which is defined 
by d z ( f )  = C,(@"(r) I(n -n,# @,,(?)), where n is the position of the site, and qn(t) the 
nth site wavefunction at time f which is determined by the time dependent Schrodinger 
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equation i&(r) = H n , n - ~ @ n - , ( ? )  + & , + ~ @ ~ + ~ ( f )  with the initial condition @"(t) = &,,*,,, 
Numerical calculations show that for long time t ,  d ( t )  - t Y  and that for different initial 
conditions (i.e. at f = 0, the electron is located at different sites) one can find different 
values of the exponent y .  A recent analytical analysis [131 proved that y > 01 for any ID 
system with a singular continuous measure, where ff is the scaling exponent of the LDOS 
measure of the site where the electron is initially located. This is not in contradiction with 
our results stating that there are energies where > 1. which would then lead to electron 
motions faster than standard ballistic motion corresponding to y = 1. It simply implies that 
these energies form a subset of measure zero in the spectrum, and are therfore irrelevant 
for the electronic motion. 
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